Step of Proof: adjacent-cons
11,40
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
adjacent-cons
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
u
:
T
5.
L
:
T
List
6.
i
: {0..((||
L
||+1) - 1)
}
7.
x
= [
u
/
L
][
i
]
8.
y
= [
u
/
L
][(
i
+1)]
9. 0 < ||
L
||
10.
i
= 0
(
x
=
u
&
y
= hd(
L
))
(
i
:{0..(||
L
|| - 1)
}. (
x
=
L
[
i
] &
y
=
L
[(
i
+1)]))
latex
by ((((OrLeft)
CollapseTHENA (Auto
))
)
CollapseTHEN (((HypSubst' (-1) (-4))
CollapseTHEN (
C
((HypSubst' (-1) (-3))
CollapseTHEN (((DVar `L')
CollapseTHEN (((All Reduce)
CollapseTHEN (
C
Auto
))
))
))
))
))
latex
C
.
Definitions
P
Q
,
x
:
A
.
B
(
x
)
,
{
x
:
A
|
B
(
x
)}
,
,
i
j
<
k
,
A
B
,
A
,
False
,
s
~
t
,
n
-
m
,
n
+
m
,
||
as
||
,
SQType(
T
)
,
x
:
A
.
B
(
x
)
,
P
Q
,
x
:
A
B
(
x
)
,
{
T
}
,
tl(
l
)
,
l
[
i
]
,
i
z
j
,
i
<z
j
,
hd(
l
)
,
a
<
b
,
{
i
..
j
}
,
type
List
,
Type
,
P
&
Q
,
x
:
A
B
(
x
)
,
s
=
t
Lemmas
int
seg
wf
,
guard
wf
origin